Namespace(batch=128, dataset='CIFAR10', epochs=50, k=4, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k4_2', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.48 / 27.01 Loss : 2.08 / 1.90 Time: 108.83058886602521 --------- Epoch: 5 Acc : 40.69 / 34.36 Loss : 1.63 / 1.72 Time: 652.1599301332608 --------- Epoch: 10 Acc : 46.78 / 39.97 Loss : 1.47 / 1.61 Time: 1195.5011438680813 --------- Epoch: 15 Acc : 50.49 / 34.57 Loss : 1.37 / 1.80 Time: 1737.6985349021852 --------- Epoch: 20 Acc : 53.32 / 39.84 Loss : 1.30 / 1.62 Time: 2280.7298378217965 --------- Epoch: 25 Acc : 56.46 / 40.06 Loss : 1.22 / 1.60 Time: 2822.9770746883005 --------- Epoch: 30 Acc : 59.26 / 40.83 Loss : 1.14 / 1.60 Time: 3365.840932168998 --------- Epoch: 35 Acc : 60.35 / 41.57 Loss : 1.11 / 1.60 Time: 3910.3378865057603 --------- Epoch: 40 Acc : 63.47 / 45.50 Loss : 1.03 / 1.51 Time: 4454.4913957370445 --------- Epoch: 45 Acc : 63.91 / 42.31 Loss : 1.02 / 1.67 Time: 4998.679032381624 --------- Best Acc : 47.46 Training time (min): 90.5504788563742 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k4_2.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k4_2 " saved ! real 90m46.666s user 90m46.955s sys 27m20.062s