Namespace(batch=128, dataset='CIFAR10', epochs=50, k=3, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k3_3', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.60 / 30.29 Loss : 2.07 / 1.83 Time: 73.45093404874206 --------- Epoch: 5 Acc : 41.07 / 36.65 Loss : 1.62 / 1.71 Time: 438.5278573250398 --------- Epoch: 10 Acc : 46.55 / 39.90 Loss : 1.48 / 1.61 Time: 804.3547679651529 --------- Epoch: 15 Acc : 50.45 / 38.47 Loss : 1.37 / 1.60 Time: 1169.9524947265163 --------- Epoch: 20 Acc : 54.17 / 39.78 Loss : 1.28 / 1.64 Time: 1535.7289634384215 --------- Epoch: 25 Acc : 56.16 / 42.75 Loss : 1.23 / 1.57 Time: 1901.3407105300575 --------- Epoch: 30 Acc : 58.65 / 46.69 Loss : 1.16 / 1.47 Time: 2266.849103649147 --------- Epoch: 35 Acc : 60.92 / 42.35 Loss : 1.10 / 1.66 Time: 2632.664029543288 --------- Epoch: 40 Acc : 63.07 / 41.75 Loss : 1.05 / 1.66 Time: 2998.279637400992 --------- Epoch: 45 Acc : 64.36 / 44.86 Loss : 1.01 / 1.58 Time: 3364.5860096393153 --------- Best Acc : 48.28 Training time (min): 60.951772359386084 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k3_3.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k3_3 " saved ! real 61m10.551s user 70m16.339s sys 18m43.649s