mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-04 17:50:46 +02:00
Initial commit
This commit is contained in:
parent
2ba6dbe7cc
commit
3de923156c
32 changed files with 4054 additions and 1 deletions
123
models/Old/mylenet2.py
Normal file
123
models/Old/mylenet2.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
'''LeNet in PyTorch.'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class MyLeNet2(nn.Module):
|
||||
def __init__(self):
|
||||
super(MyLeNet2, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 60, 5)
|
||||
self.conv2 = nn.Conv2d(60, 160, 5)
|
||||
self.fc1 = nn.Linear(160*5*5, 120)
|
||||
self.fc2 = nn.Linear(120, 84)
|
||||
self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
# Vanilla Convolution
|
||||
def myconv2d(self, input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
||||
batch_size, in_channels, in_h, in_w = input.shape
|
||||
out_channels, in_channels, kh, kw = weight.shape
|
||||
out_h = in_h-2*(int(kh)/2)
|
||||
out_w = in_w-2*(int(kw)/2)
|
||||
|
||||
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=dilation, padding=padding, stride=stride)
|
||||
inp_unf = unfold(input)#.view(batch_size,in_channels*kh*kw,out_h,out_w)
|
||||
|
||||
|
||||
if bias is None:
|
||||
out_unf = inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()).transpose(1, 2)
|
||||
else:
|
||||
out_unf = (inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()) + bias).transpose(1, 2)
|
||||
|
||||
out = out_unf.view(batch_size, out_channels, out_h, out_w)
|
||||
return out
|
||||
|
||||
def myconv2d_avg(self, input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1,size=2):
|
||||
batch_size, in_channels, in_h, in_w = input.shape
|
||||
out_channels, in_channels, kh, kw = weight.shape
|
||||
out_h = in_h-2*(int(kh)/2)
|
||||
out_w = in_w-2*(int(kw)/2)
|
||||
|
||||
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=dilation, padding=padding, stride=stride)
|
||||
inp_unf = unfold(input).view(batch_size,in_channels*kh*kw,out_h,out_w)
|
||||
sel_h = torch.LongTensor(out_h/size,out_w/size).random_(0, size)#.cuda()
|
||||
rng_h = sel_h + torch.arange(0,out_h,size).long()#.cuda()
|
||||
|
||||
sel_w = torch.LongTensor(out_h/size,out_w/size).random_(0, size)#.cuda()
|
||||
rng_w = sel_w+torch.arange(0,out_w,size).long()#.cuda()
|
||||
inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,out_h/size*out_w/size)
|
||||
#unfold_avg = torch.nn.Unfold(kernel_size=(1, 1), dilation=1, padding=0, stride=2)
|
||||
|
||||
if bias is None:
|
||||
out_unf = inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()).transpose(1, 2)
|
||||
else:
|
||||
out_unf = (inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()) + bias).transpose(1, 2)
|
||||
|
||||
out = out_unf.view(batch_size, out_channels, out_h/size, out_w/size).contiguous()
|
||||
return out
|
||||
|
||||
|
||||
def savg_pool2d(self,x,size):
|
||||
b,c,h,w = x.shape
|
||||
selh = torch.LongTensor(h/size,w/size).random_(0, size)
|
||||
rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size)
|
||||
selx = (selh+rngh).repeat(b,c,1,1)
|
||||
|
||||
selw = torch.LongTensor(h/size,w/size).random_(0, size)
|
||||
rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size)
|
||||
sely = (selw+rngw).repeat(b,c,1,1)
|
||||
bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)])
|
||||
#x=x.view(b,c,h*w)
|
||||
newx = x[bv,cv, selx, sely]
|
||||
#ghdh
|
||||
return newx
|
||||
|
||||
def ssoftmax_pool2d(self,x,size,idx):
|
||||
b,c,h,w = x.shape
|
||||
w = wdataset[idx]
|
||||
selh = torch.LongTensor(h/size,w/size).random_(0, size)
|
||||
rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size)
|
||||
selx = (selh+rngh).repeat(b,c,1,1)
|
||||
|
||||
selw = torch.LongTensor(h/size,w/size).random_(0, size)
|
||||
rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size)
|
||||
sely = (selw+rngw).repeat(b,c,1,1)
|
||||
bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)])
|
||||
#x=x.view(b,c,h*w)
|
||||
newx = x[bv,cv, selx, sely]
|
||||
#ghdh
|
||||
return newx
|
||||
|
||||
def mavg_pool2d(self,x,size):
|
||||
b,c,h,w = x.shape
|
||||
#newx=(x[:,:,0::2,0::2]+x[:,:,1::2,0::2]+x[:,:,0::2,1::2]+x[:,:,1::2,1::2])/4
|
||||
newx=(x[:,:,0::2,0::2])
|
||||
return newx
|
||||
|
||||
|
||||
def forward(self, x, stoch=True):
|
||||
if self.training==False:
|
||||
stoch=False
|
||||
#out = F.relu(self.conv1(x))
|
||||
out = F.relu(self.myconv2d(x, self.conv1.weight, bias=self.conv1.bias))
|
||||
if stoch:
|
||||
out = self.savg_pool2d(out, 2)
|
||||
else:
|
||||
out = F.avg_pool2d(out, 2)
|
||||
#out = F.relu(self.conv2(out))
|
||||
if 0:
|
||||
out = F.relu(self.myconv2d_avg(out, self.conv2.weight, bias=self.conv2.bias,size=2))
|
||||
else:
|
||||
#out = F.relu(self.conv2(out))
|
||||
out = F.relu(self.myconv2d(out, self.conv2.weight, bias=self.conv2.bias))
|
||||
out = F.avg_pool2d(out, 2)
|
||||
#if stoch:
|
||||
# out = self.savg_pool2d(out, 2)
|
||||
#else:
|
||||
# out = F.avg_pool2d(out, 2)
|
||||
out = out.view(out.size(0), -1 )
|
||||
out = F.relu(self.fc1(out))
|
||||
out = F.relu(self.fc2(out))
|
||||
out = self.fc3(out)
|
||||
return out
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue