mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-04 09:40:46 +02:00
Initial commit
This commit is contained in:
parent
2ba6dbe7cc
commit
3de923156c
32 changed files with 4054 additions and 1 deletions
61
models/Old/mobilenet.py
Normal file
61
models/Old/mobilenet.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
'''MobileNet in PyTorch.
|
||||
|
||||
See the paper "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"
|
||||
for more details.
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
'''Depthwise conv + Pointwise conv'''
|
||||
def __init__(self, in_planes, out_planes, stride=1):
|
||||
super(Block, self).__init__()
|
||||
self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(in_planes)
|
||||
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(out_planes)
|
||||
|
||||
def forward(self, x):
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out = F.relu(self.bn2(self.conv2(out)))
|
||||
return out
|
||||
|
||||
|
||||
class MobileNet(nn.Module):
|
||||
# (128,2) means conv planes=128, conv stride=2, by default conv stride=1
|
||||
cfg = [64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), 1024]
|
||||
|
||||
def __init__(self, num_classes=10):
|
||||
super(MobileNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(32)
|
||||
self.layers = self._make_layers(in_planes=32)
|
||||
self.linear = nn.Linear(1024, num_classes)
|
||||
|
||||
def _make_layers(self, in_planes):
|
||||
layers = []
|
||||
for x in self.cfg:
|
||||
out_planes = x if isinstance(x, int) else x[0]
|
||||
stride = 1 if isinstance(x, int) else x[1]
|
||||
layers.append(Block(in_planes, out_planes, stride))
|
||||
in_planes = out_planes
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out = self.layers(out)
|
||||
out = F.avg_pool2d(out, 2)
|
||||
out = out.view(out.size(0), -1)
|
||||
out = self.linear(out)
|
||||
return out
|
||||
|
||||
|
||||
def test():
|
||||
net = MobileNet()
|
||||
x = torch.randn(1,3,32,32)
|
||||
y = net(x)
|
||||
print(y.size())
|
||||
|
||||
# test()
|
Loading…
Add table
Add a link
Reference in a new issue