mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-04 17:50:46 +02:00
188 lines
6.9 KiB
Python
188 lines
6.9 KiB
Python
|
'''ResNet in PyTorch.
|
||
|
|
||
|
For Pre-activation ResNet, see 'preact_resnet.py'.
|
||
|
|
||
|
Reference:
|
||
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
||
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
||
|
'''
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Module):
|
||
|
expansion = 1
|
||
|
|
||
|
def __init__(self, in_planes, planes, stride=1):
|
||
|
super(BasicBlock, self).__init__()
|
||
|
self.conv1 = nn.Conv2d(
|
||
|
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(planes)
|
||
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
||
|
stride=1, padding=1, bias=False)
|
||
|
self.bn2 = nn.BatchNorm2d(planes)
|
||
|
|
||
|
self.shortcut = nn.Sequential()
|
||
|
if stride != 1 or in_planes != self.expansion*planes:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(in_planes, self.expansion*planes,
|
||
|
kernel_size=1, stride=stride, bias=False),
|
||
|
nn.BatchNorm2d(self.expansion*planes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out = self.bn2(self.conv2(out))
|
||
|
out += self.shortcut(x)
|
||
|
out = F.relu(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Bottleneck(nn.Module):
|
||
|
expansion = 4
|
||
|
|
||
|
def __init__(self, in_planes, planes, stride=1):
|
||
|
super(Bottleneck, self).__init__()
|
||
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(planes)
|
||
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
||
|
stride=stride, padding=1, bias=False)
|
||
|
self.bn2 = nn.BatchNorm2d(planes)
|
||
|
self.conv3 = nn.Conv2d(planes, self.expansion *
|
||
|
planes, kernel_size=1, bias=False)
|
||
|
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
|
||
|
|
||
|
self.shortcut = nn.Sequential()
|
||
|
if stride != 1 or in_planes != self.expansion*planes:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(in_planes, self.expansion*planes,
|
||
|
kernel_size=1, stride=stride, bias=False),
|
||
|
nn.BatchNorm2d(self.expansion*planes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out = F.relu(self.bn2(self.conv2(out)))
|
||
|
out = self.bn3(self.conv3(out))
|
||
|
out += self.shortcut(x)
|
||
|
out = F.relu(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ResNet(nn.Module):
|
||
|
def __init__(self, block, num_blocks, num_classes=10,stoch=False):
|
||
|
super(ResNet, self).__init__()
|
||
|
self.in_planes = 64
|
||
|
|
||
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
|
||
|
stride=1, padding=1, bias=False)
|
||
|
self.conv2 = nn.Conv2d(512, 512, kernel_size=3,
|
||
|
stride=1, padding=1, bias=True)
|
||
|
self.bn1 = nn.BatchNorm2d(64)
|
||
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
||
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
||
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
||
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
||
|
self.linear = nn.Linear(512*block.expansion, num_classes)
|
||
|
self.stoch = stoch
|
||
|
|
||
|
def _make_layer(self, block, planes, num_blocks, stride):
|
||
|
strides = [stride] + [1]*(num_blocks-1)
|
||
|
layers = []
|
||
|
for stride in strides:
|
||
|
layers.append(block(self.in_planes, planes, stride))
|
||
|
self.in_planes = planes * block.expansion
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def myconv2d_avg(self, input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1,size=2):
|
||
|
batch_size, in_channels, in_h, in_w = input.shape
|
||
|
out_channels, in_channels, kh, kw = weight.shape
|
||
|
out_h = (in_h+2*padding)-2*(int(kh)/2)
|
||
|
out_w = (in_w+2*padding)-2*(int(kw)/2)
|
||
|
|
||
|
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=dilation, padding=padding, stride=stride)
|
||
|
inp_unf = unfold(input).view(batch_size,in_channels*kh*kw,out_h,out_w)
|
||
|
sel_h = torch.LongTensor(out_h/size,out_w/size).random_(0, size)#.cuda()
|
||
|
rng_h = sel_h + torch.arange(0,out_h,size).long()#.cuda()
|
||
|
|
||
|
sel_w = torch.LongTensor(out_h/size,out_w/size).random_(0, size)#.cuda()
|
||
|
rng_w = sel_w+torch.arange(0,out_w,size).long()#.cuda()
|
||
|
inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,out_h/size*out_w/size)
|
||
|
#unfold_avg = torch.nn.Unfold(kernel_size=(1, 1), dilation=1, padding=0, stride=2)
|
||
|
|
||
|
if bias is None:
|
||
|
out_unf = inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()).transpose(1, 2)
|
||
|
else:
|
||
|
out_unf = (inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()) + bias).transpose(1, 2)
|
||
|
|
||
|
out = out_unf.view(batch_size, out_channels, out_h/size, out_w/size).contiguous()
|
||
|
return out
|
||
|
|
||
|
|
||
|
def savg_pool2d(self,x,size,locx=-1,locy=-1):
|
||
|
b,c,h,w = x.shape
|
||
|
if locx==-1:
|
||
|
selh = torch.LongTensor(h/size,w/size).random_(0, size)
|
||
|
else:
|
||
|
selh = torch.ones(h/size,w/size).long()*loc
|
||
|
rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size)
|
||
|
selx = (selh+rngh).repeat(b,c,1,1)
|
||
|
if locy==-1:
|
||
|
selw = torch.LongTensor(h/size,w/size).random_(0, size)
|
||
|
else:
|
||
|
selw = torch.ones(h/size,w/size).long()*loc
|
||
|
rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size)
|
||
|
sely = (selw+rngw).repeat(b,c,1,1)
|
||
|
bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)])
|
||
|
#x=x.view(b,c,h*w)
|
||
|
newx = x[bv,cv, selx, sely]
|
||
|
#ghdh
|
||
|
return newx
|
||
|
|
||
|
def forward(self, x ,stoch = True):
|
||
|
#if self.training==False:
|
||
|
# stoch=False
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out = self.layer1(out)
|
||
|
out = self.layer2(out)
|
||
|
out = self.layer3(out)
|
||
|
out = self.layer4(out)
|
||
|
if self.stoch and stoch:
|
||
|
out = F.relu(self.myconv2d_avg(out, self.conv2.weight, bias=self.conv2.bias,padding=1,size=4))
|
||
|
#out = F.avg_pool2d(out, 2)
|
||
|
else:
|
||
|
out = F.relu(self.myconv2d_avg(out, self.conv2.weight, bias=self.conv2.bias,padding=1,size=1))
|
||
|
out = F.avg_pool2d(out, 4)
|
||
|
out = out.view(out.size(0), -1)
|
||
|
out = self.linear(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def MyResNet18(stoch=False):
|
||
|
return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch)
|
||
|
|
||
|
|
||
|
def ResNet34():
|
||
|
return ResNet(BasicBlock, [3, 4, 6, 3])
|
||
|
|
||
|
|
||
|
def MyResNet50():
|
||
|
return ResNet(Bottleneck, [3, 4, 6, 3])
|
||
|
|
||
|
|
||
|
def ResNet101():
|
||
|
return ResNet(Bottleneck, [3, 4, 23, 3])
|
||
|
|
||
|
|
||
|
def ResNet152():
|
||
|
return ResNet(Bottleneck, [3, 8, 36, 3])
|
||
|
|
||
|
|
||
|
def test():
|
||
|
net = ResNet18()
|
||
|
y = net(torch.randn(1, 3, 32, 32))
|
||
|
print(y.size())
|
||
|
|
||
|
# test()
|