2020-06-12 01:42:08 -07:00
|
|
|
# BU_Stoch_pool
|
|
|
|
|
|
|
|
# Train CIFAR10 with PyTorch
|
|
|
|
|
|
|
|
I'm playing with [PyTorch](http://pytorch.org/) on the CIFAR10 dataset.
|
|
|
|
|
|
|
|
## Prerequisites
|
|
|
|
- Python 3.6+
|
|
|
|
- PyTorch 1.0+
|
|
|
|
|
|
|
|
## Accuracy
|
|
|
|
| Model | Acc. |
|
|
|
|
| ----------------- | ----------- |
|
|
|
|
| [VGG16](https://arxiv.org/abs/1409.1556) | 92.64% |
|
|
|
|
| [ResNet18](https://arxiv.org/abs/1512.03385) | 93.02% |
|
|
|
|
| [ResNet50](https://arxiv.org/abs/1512.03385) | 93.62% |
|
|
|
|
| [ResNet101](https://arxiv.org/abs/1512.03385) | 93.75% |
|
|
|
|
| [RegNetX_200MF](https://arxiv.org/abs/2003.13678) | 94.24% |
|
|
|
|
| [RegNetY_400MF](https://arxiv.org/abs/2003.13678) | 94.29% |
|
|
|
|
| [MobileNetV2](https://arxiv.org/abs/1801.04381) | 94.43% |
|
|
|
|
| [ResNeXt29(32x4d)](https://arxiv.org/abs/1611.05431) | 94.73% |
|
|
|
|
| [ResNeXt29(2x64d)](https://arxiv.org/abs/1611.05431) | 94.82% |
|
|
|
|
| [DenseNet121](https://arxiv.org/abs/1608.06993) | 95.04% |
|
|
|
|
| [PreActResNet18](https://arxiv.org/abs/1603.05027) | 95.11% |
|
|
|
|
| [DPN92](https://arxiv.org/abs/1707.01629) | 95.16% |
|
|
|
|
|
|
|
|
## Learning rate adjustment
|
|
|
|
I manually change the `lr` during training:
|
|
|
|
- `0.1` for epoch `[0,150)`
|
|
|
|
- `0.01` for epoch `[150,250)`
|
|
|
|
- `0.001` for epoch `[250,350)`
|
|
|
|
|
|
|
|
Resume the training with `python main.py --resume --lr=0.01`
|